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Introduction. The quantum theory of a pair of coupled oscillators recently
brought to my attention—because the problem is so simple that it can be
solved in two distinct ways—a population of identities, properties of the Hermite
polynomials with which the quantum theory of oscillators is so replete, that
appear in none of the standard handbooks and in no other literature of which
I am presently aware. Notes written during the exploratory phase of this
effort1 manage to make the subject seem more obscurely/diffusely complex
than in fact it is. Here I use (mainly) generating function methods standard
to the general theory of orthogonal polynomials—and more particularly to the
theory of Hermite polynomials—to obtain the novel identities by means that
are relatively simple/transparent.

Simplest form of the identities in question.
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1 “Note concerning a possibly novel population of Hermite polynomial
identites” and “Note concerning properties of the ‘Hermite rotation matrices’
latent in a novel population of Hermite polynomial identities,” both dated
March, 2020.
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Here the Hn(x) are the “physicists’ Hermite polynomials” generated by

e2xt−t2 =
∞∑

n=0

1
n!Hn(x)tn (1)

of which the first few are
H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 482 + 12

H5(x) = 32x5 − 160x3 + 120x

H6(x) = 64x6 − 480x4 + 720x2 − 120

Hn(x) is a polynomial of degree n, even or odd according as n is.
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which establishes the sense in which the Hermite polynomials Hn(x) are
orthogonal. More convenient is some contexts are the normalized Hermite
polynomials
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Hermite bases. The real polynomials p(x) = p0x0 + p1x1 + · · · + pnxn of degree
n collectively comprise a (n + 1)-dimensional vector space Vn, of which the
polynomials {x0, x1, x2, . . . , xn} comprise the “natural basis” and the Hermite
polynomials{H0(x), H1(x), H2(x), . . . , Hn(x)} the“Hermite basis.” If we endow
Vn with the specific inner product structure

〈p|q〉 ≡
∫ +∞

−∞
e−x2

p(x)q(x)dx (4)

then {h0(x), h1(x), h2(x), . . . , hn(x)} comprise the “orthonormal Hermite basis”
in terms of which an arbitrary p(x) ∈ Vn can be developed

p(x) =
n∑

k=0

pkhk(x) with pk = 〈p(x)|hk(x〉) (5)

Then 〈p|p〉 = p2
0 + p2

1 + · · · + p2
n, and if 〈p|p〉 = 1 then the {pk} are in effect

elements of a unit vector. If 〈p|p〉 = 〈q|q〉 = 1 and 〈p|q〉 = 0 then {pk} and {qk}
are in effect elements of an orthogonal pair of unit vectors. These simple facts
will play important roles in what follows.

Mathematica (after having evaluated twenty-five integrals) reports that the
h-developments of these elements {x0, x1, x2, x3, x4} of the natural basis can be
described
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The 0s above the principal diagonal reflect the fact that xn ⊥ hm(x) : m > n ,
while those below the principal diagonal indicate that xn ⊥ hm(x) when {m, n}
are of opposite parity. One could use such information to construct the
h-development of an arbitrary polynomial p(x), though it is usually simpler
to proceed from (5).

Hermite addition formula. “Bivariate polynomials of degree n” are constructs of
the form

p(x, y) =
∑

i,j:i+j!n

pijx
iy j

Hn(x + y)—consider the example

H4(x + y) = 16(x + y)4 − 48(x + y) + 12

= 16x4 + 64x3y + 96x2y2 + 64xy3 + 16y4

− 48x2 − 96xy − 48t2 + 12
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—is bivariate of degree n. So are the products {Hk(x)Hn−k(y) : k = 0, 1, . . . , n};
consider the example

H2(x)H2(y) = (4x2 − 2)(4y2 − 2)

= 16x2y2 − 8x2 − 8y2 + 4

The “Hermite addition formula” presents the former as a linear combination
of (slight variants of) the latter, and anticipates the structure of the novel
identities of present interest.

The specific linear combination in question can be obtained as follows:
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which is the Hermite addition formula. Written
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it acquires a qualitative resemblance—no accident, as will emerge!—to the novel
identities illustrated on pages 1 & 2, and the argument suggests how those might
be obtained.

Derivation of the identities in question. We proceed from
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On the right, Hu(x)Hv(y) is bivariate of degree n = u + v. To illustrate the
utility of (7) I look to the case n = 2; i.e., to the equations that result from
identifying the left/right coefficients of {s0t2, s1t1, s2t0}. From
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which exactly reproduces the second (3-element) batch of the identities presented
on page 1, identities originally obtained1 by several alternative—and in all cases
less efficient/transparent—lines of argument.

The preceding identities were assembled “by hand.” To automate assembly
of the identities of composite degree n we from multiply (7) by n! and have
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obtain
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From H0(•) = 1 and
(n
0

)
= 1 we in the case k = 0 recover (6.2), which shows the

identities (9) to be generalizations of the Hermite addition formulae.

Evaluation of the coefficients Akp(n) introduced at (8)—whence also of
Qkp(n)—is a tedious job best consigned to Mathematica.2 In the case n = 3
we compute

Q(n) ≡





Q00 Q01 Q02 Q03

Q10 Q11 Q12 Q13

Q20 Q21 Q22 Q23

Q30 Q31 Q32 Q33



 = 1√
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1 3 3 1
−1 −1 1 1
1 −1 −1 1
−1 3 −3 1



 (10)

which brings (9.1) into precise agreement with the identities that appear at the
top of page 2.

Informative reformulation. From the orthogonality of the Hermite polynomials
Hm(x) follows that of the bivariate polynomials Hmn(x, y) = Hm(x)Hn(y).
Similarly, from the orthonormality of the normalized Hermite polynomials
hm(x) follows that of the bivariate polynomials hmn(x, y) = hm(x)hn(y):

〈hmn|hpq〉 ≡
∫∫ +∞

−∞
e−x2−y2

hmn(x, y)hpq(x, y)dxdy = δmpδnq ≡ δmn,pq

2 f[n−, p−]:=Expand[(t + s)p(t − s)n−p]
F[n−]:=Table[f[n, p],{p, 0, n}]
F[n−, p−]:=Table[Coefficient[F[n][[p + 1]], sktn−k],{k, 0, n}]
A[k−, p−, n−]:=F[n, p][[k + 1]]
Q[k−, p−, n−]:=2−n/2Binomial[n, k]–1Binomial[n, p]A[k, p, n]
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The functions hk,n−k(x, y) : k = 0, 1, 2, . . . , n provide an orthonormal basis in
the space of polynomials p(x, y) of bivariate degree n.

Look now to the bivariate polynomials

gmn(x, y) ≡ hm

(x−y√
2

)
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(x+y√
2

)
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∫∫ +∞

−∞
e−x2−y2

hm

(x−y√
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2

, Y = x+y√
2

and by

x2 + y2 = X2 + Y 2, det
(
∂x/∂X ∂x/∂Y
∂y/∂X ∂y/∂Y

)
= 1

obtain

〈gmn|gpq〉 =
∫∫ +∞

−∞
e−X2−Y 2

hm(X)hp(X)hn(Y )hq(Y )dXdY = δmn,pq

So the functions Gk,n−k(x, y) provide an alternative orthogonal basis—and the
functions gk,n−k(x, y) : k = 0, 1, 2, . . . , n an alternative orthonormal basis—in
the space of polynomials p(x, y) of bivariate degree n.

The generalized addition formulae (9.1) can be formulated
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So the generalized addition formulae, when expressed in terms of normalized
Hermite polynomials, read

gggn = Rnhhhn with Rn = Dn
–1QnDn (12)

In the case n = 3 we from (10) obtain

R3 = 1√
8





1
√

3
√

3 1
−
√

3 −1 1
√

3√
3 −1 −1

√
3

−1
√

3 −
√
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The matrices Rn, since they are seen in (12) to describe the linear relationship of
one orthonormal basis to another, must be rotation matrices3: Rn Rn

T = I , and
indeed, Mathematica reports that R3 is rotational and proper (unimodular):

R3 R3
T = I , det R3 = 1

The observaton3 that the elements of Rn are inner products

Rn =





〈h0,n−0|g0,n−0〉 〈h1,n−1|g0,n−0〉 · · · 〈hn,n−n|g0,n−0〉
〈h0,n−0|g1,n−1〉 〈h1,n−1|g1,n−1〉 · · · 〈hn,n−n|g1,n−1〉

...
...

. . .
...

〈h0,n−0|gn,n−n〉 〈h1,n−1|gn,n−n〉 · · · 〈hn,n−n|gn,n−n〉





provides an alternative (less efficient) way to construct such matrices; namely,
by evaluating (n+1)2 double integrals. By this means, Mathematica constructs
R3 in about thirty seconds, and the unimodular rotation matrix

R4 = 1
4





1 2
√

6 2 1
−2 −2 0 2 2√

6 0 −2 0
√

6
−2 2 0 −2 2
1 −2

√
6 −2 1





in less than a minute. Again, the top row (uniquely: no minus signs) produces
the h-formulation of a Hermite addition formula.

3 The argument runs as follows: Suppose bases {|hi〉} and {|gi〉} both to be
orthonormal and complete: 〈hi|hj〉 = δij and

∑
k |hk〉〈hk| = I; similarly {|gi〉}.

Then
|gj〉 =

∑
k|hk〉〈hk|gj〉 =

∑
kRjk|hk〉 with Rjk ≡ 〈hk|gj〉

gives
〈gi|gj〉 =

∑
k〈gi|hk〉〈hk|gj〉 =

∑
k〈hk|gj〉〈gi|hk〉 = δji

R RT = I
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More general left-side arguments. The arguments x±y√
2

that appear on the left
side of the identities displayed on pages 1 & 2—leading instances of (9.1)—arise
from

R(α)
(

x
y

)
=

(
x cosα− y sinα
x sinα + y cosα

)
: R(α) =

(
cosα − sinα
sinα cosα

)

in the case α = π/4. We look now to the identities that result when the value
of α is unrestricted; i.e., to the H-development of the polynomials

Hk(ax − by)Hn−k(bx + ay) : det
(

a −b
b a

)
= a2 + b2 = 1

Arguing as we did on page 4, we have
∑

p,q

1
p!q!Hp(ax − by)Hq(bx + ay)sptq

= exp
[
2(ax − by)s − s2

]
exp

[
2(bx − ay)t − t2

]

= exp
[
2x(bt + as) + 2y(at − bs) − (s2 + t2)

]

which by(s2+t2)=
(

bt+as√
a2+b2

)2+
(

at−bs√
a2+b2

)2 becomes, subject to the unimodularity
condition a2 + b2 = 1,

=
∑

u,v

1
u!v!Hu(x)Hv(y)

(
bt + as

)u(
at − bs

)v

From this if follows in particular (set p = k, q = n − k ; u = p, v = n − p) that

n∑

k=0

(
n

k

)
Hk(ax − by)Hn−k(bx + ay) · sktn−k

=
n∑

p=0

(
n

p

)
Hp(x)Hn−p(y) · (bt + as)p(at − bs)n−p

Writing

(bt + as)p(at − bs)n−p =
n∑

k=0

Akp(n; a, b) · sktn−k

(where the previous routine2 serves to construct the coefficients Akp(n; a, b))
we have—subject to the unimodularity condition (since it was evoked in the
argument)—

Hk(ax − by)Hn−k(bx + ay) =
n∑

p=0

Qkp(n; a, b)Hp(x)Hn−p(y) (14.1)

Qkp(n; a, b) =

(n
p

)
(n

k

)Akp(n; a, b) (14.2)
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Calculation in the case n = 3 gives

Q3(a, b) =





a3 3a2b 3ab2 b3

−a2b a3 − 2ab2 2a2b − b3 ab2

ab2 b3 − 2a2b a3 − 2ab2 a2b
−b3 3ab2 −3a2b a3



 (15)

det Q3(a, b) = (a2 + b2)6

which gives back (10) in the unimodular case a = b = 1/
√

2. We can orchestrate
general unimodularity by setting a = cosα, b = sinα. While the structure of
the elements of the resulting Q3(α) is obvious, we note that the central terms
can be written

a3 − 2ab2 = 1
4 (cosα + 3 cos 3α)

b3 − 2a2b = 1
4 (sinα− 3 sin 3α)

Such trigonometric complexity becomes increassingly commonplace when one
looks to the elements of Qn(α) with increasing n.

From (15) we obtain

R3(a, b) = D3
–1 Q3(a, b)D3

=





a3
√

3a2b
√

3ab2 b3

−
√

3a2b a3 − 2ab2 2a2b − b3
√

3ab2
√

3ab2 b3 − 2a2b a3 − 2ab2
√

3a2b
−b3

√
3ab2 −

√
3a2b a3





det R3(a, b) = (a2 + b2)6

which is seen by
R3(a, b) R3

T(a, b) = (a2 + b2)6 · I3
to be rotational in unimodular cases.The structure of the manifestly unimodular
matrix R3(α) is again obvious. Rn(α) can be constructed similarly.

Conclusion: Generalized Hermite addition formulae. Writing

Gm,n(α) ≡ Gm,n(x, y ;α) = Hm(x cosα− y sinα)Hn(x sinα + y cosα)
gm,n(α) ≡ gm,n(x, y ;α) = hm(x cosα− y sinα) hn(x sinα + y cosα)

we have been led, in the case “rank”= n, to a set of n + 1 identities that can
be written





G0,n(α)
G1,n−1(α)
G2,n−2(α)

...
Gn,0(α)




= Qn(α)





H0,n

H1,n−1

H2,n−2

...
Hn,0




,





g0,n(α)
g1,n−1(α)
g2,n−2(α)

...
gn,0(α)




= Rn(α)





h0,n

h1,n−1

h2,n−2

...
hn,0





where Hm,n = Gm,n(0), hm,n = hm,n(0). In the latter cases, the Rn(α) matrices



Conclusion: Generalized Hermite addition formulae 11

are unmimodular rotational, describe the relationship between two orthonormal
bases in the space of polynomials p(x, y) of bivariate degree n.

In the cases G0,n( 1
4π) we recover the familiar Hermite addition formulae.


